SET NO.- 2

CHOUDHARY'S Sample Question Paper CLASS: XII APPLIED MATHEMATICS

(Subject Code: 241) SESSION - 2022-23
Time Allowed: 3 hours
Maximum Marks: $\mathbf{8 0}$
General Instructions:

1. This question paper contains five sections A, B, C, D and E. Each section is compulsory.
2. Section - A carries 20 marks weightage, Section - B carries $\mathbf{1 0}$ marks weightage, Section - C carries 18 marks weightage, Section - D carries 20 marks weightage and Section-E carries 3 case-based with total weightage of 12 marks.
3. Section - A: It comprises of $\mathbf{2 0}$ MCQs of 1 mark each.
4. Section - B: It comprises of 5 VSA type questions of 2 marks each.
5. Section - C: It comprises of 6 SA type of questions of 3 marks each.
6. Section - D: It comprises of 4 LA type of questions of 5 marks each.
7. Section - E: It has 3 case studies. Each case study comprises of 3 case-based questions, where 2 VSA type questions are of 1 mark each and 1 SA type question is of 2 marks. Internal choice is provided in 2 marks question in each case-study.
8. Internal choice is provided in 2 questions in Section - B, 2 questions in Section - C, 2 questions in Section - D. You have to attempt only one of the alternatives in all such questions.

SECTION - A
(All questions are compulsory. No internal choice is provided in this section)
Marks
1 Find the least non-negative remainder when $64 \times 65 \times 66$ is divided by 67
a) 64
b) 65
c) -6
d) 61

1
2 If $y=3^{(x-1)}+3(-x+1)$, x is real, then find the least value of y
a)
b) $\frac{1}{3}$
c) 2
d) 1

3 A statement made about a population parameter for testing purpose is called
b) parameter $\begin{array}{lll}\text { c) hypothesis } & \text { d) level of significance }\end{array}$
a) statistic

4 In a binomial distribution, the probability of getting a success is $\frac{1}{4}$ and the standard deviation is 3 . Then its mean is
a) 6
b) 8
c) 12
d) 48

5 The speed of a motor boat and that of the water is in the ratio 36:5. The boat goes along with the current in 5 hours 10 minutes. How much time will it take to come back?
a) 6 hr 10 min
b) 6 hr 20 min
c) 6 hr 30 min
d) 6 hr 50 min

PREPARED BY: S. D. CHOUDHARY, 7278207830, APPLIED MATH XII, SET-2

6	The present value of a perpetual income of ₹ x at the end of each six months is $₹ 40,000$ Find the value of x if money is worth 6% compounded semi-annually. a) ₹ 1200 b) ₹ 1400 c) ₹ 1500 d) None of these	1
7	Two pipes can separately fill a tank in 20 hrs and 30 hrs respectively. Both the pipes are opened to fill the tank but when the tank is $\frac{1}{3}$ full a leak develops in the tank through which $\frac{1}{3}$ of the water supplied by both the pipes leak out. What is the total time taken to fill the tank? a) 12 b) 10 c) 14 d) None of these	1
8	Viduushi Bagri takes a loan of ₹ $2,00,000$ with 10% annual interest rate for 5 years. Calculate the EMI under flat rate system. a) ₹ 4500 b) ₹ 4000 c) ₹5000 d) None of these	1
9	If the graphs of the curves $x=f(y)$ and $x=g(y)$ cross each other at finitely many points, then write the area enclosed between the graphs of the two curves and the abscissa $\mathrm{y}=\mathrm{c}, \mathrm{y}=\mathrm{d}$ a) $\int_{c}^{d}\|f(y)+g(y)\| d y$ b) $\int_{c}^{d}\|f(y)-g(y)\| \mathrm{dy}$ c) $\quad \int_{c}^{d}\|f(x)-g(x)\| d x$ d) $\int_{c}^{d}\|f(y) \cdot g(y)\| d y$	1
10	When data for one or more variables is collected at the same point in time, it is called \qquad a) Cross sectional data b) Pooled data c) time series data d) None of these	1
11	The \qquad is used to compare a sample mean to a specific value a) one sample t- test b) hypothesis test c) sampling distribution test d) Estimation test	1
12	The area of the feasible region for the following constraints $3 y+x \geq 3$, $x \geq 0$ and $y \geq 0$ will be a) bounded b) un bounded c) convex d) concave	1
13	The integrating factor of $\mathrm{x} \frac{d y}{d x}-\mathrm{y}=\mathrm{x}^{4}-3 \mathrm{x}$ is a) x b) $\log x$ c) $\frac{1}{x}$ d) $-x$	1
	In what ratio must a person mix two sugar solutions of 30% and 50% concentration respectively so as to get a solution of 45% concentration? $1: 3$ b) $2: 3$ c) $1: 2$ d) $4: 5$	1
15	Solve the differential equation $y \log y d x-x d y=0$ a) $y=e^{c x}$ b) $y=c x$ c) $\mathrm{y}=\mathrm{x} \log \mathrm{y}$ d) None of these	1

16	In testing the statistical hypothesis, which of the following statement is false? a) The critical region is the values of the test statistic for which we reject the null hypothesis b) the level of significance is the probability of Type - I error c) In testing $\mathrm{H}_{0}: \mu=\mu_{0}, \mathrm{H}_{1}: \mu \neq \mu_{0}$, the critical region is two sided d) The p -value measures the probability that the null hypothesis is true	1
17	According to the principle of least squares, which is/ are true I : The sum of the deviations of the actual values of y and estimated value of y is zero. II : The sum of squares of the deviations of the actual values of y and estimated value of y is least. a) only I b) only II c) Both I and II d) none of these	1
18	Quantitative method of forecasting can be used a) When the past information about the variable is available b) When information and data of the variable can be quantified c) On the assumption that the pattern of the past will continue in the future d) The variable has a cause - and - end effect relationship with no other variables	1
Fo (A) qu	questions 19 and 20, two statements are given - one labelled Assertion and the other labelled Reason (R). Select the correct answer to these stions from the codes (i), (ii), (iii) and (iv) as given below: (i) Both A and R are true and R is the correct explanation of the assertion (ii) Both A and R are true but R is not the correct explanation of the assertion (iii) A is true, but R is false (iv) A is false, but R is true	
	Assertion (A) : If the sum of the mean and variance of a binomial distribution for 5 trials is 1.8 then $\mathrm{p}=0.8$. Reason (R): In binomial distribution, Mean $=n . p$, Variance $=n p q$ and $p+q=1$	1
20	Assertion (A): Bhavya Parakh took a loan of ₹20,000 for 6 months . lender deducts ₹ 1,000 as interest while lending. Then the effective rate of interest charged by lender is $\left(\frac{20}{19}\right)^{0.5}-1$ Reason (R): Effective rate of return (per rupee) compounded continuously is $\boldsymbol{e}^{\frac{r}{100}}-1$, where $\mathrm{r}=$ annual rate of interest.	1

PREPARED BY: S. D. CHOUDHARY, 7278207830, APPLIED MATH XII, SET-2

PREPARED BY: S. D. CHOUDHARY, 7278207830, APPLIED MATH XII, SET-2

| | OR |
| :--- | :--- | :--- | :--- |
| At a busy traffic intersection, the probability p of an individual car having | |
| an accident is very small, say $\mathbf{p}=0.0001$. However, during a certain part | |
| of the day, a large number of cars, say 1000, pass through the | |
| intersection. Under these conditions what is the probability of two or | |
| more accidents occurring during that period? (Use $e^{-0.1}=0.9048$. | |

PREPARED BY: S. D. CHOUDHARY, 7278207830, APPLIED MATH XII, SET-2

35 A telephone company in a town has 500 subscribers on its list and collects fixed charges of ₹300 per subscriber. The company proposes to increase the annual subscription and it is believed that every increase of ₹ 1 one subscriber will discontinue the service. Find what increase will bring maximum revenue?

OR

Manufacturer can sell x items at a price of ₹ $\left(5-\frac{x}{100}\right)$ each. The cost price is $₹\left(\frac{x}{2}+500\right)$. Find the number of items he should sell to earn maximum profit.

SECTION - E
(All questions are compulsory. In case of internal choice, attempt any one question only)

36	For a Poisson distribution model, if arrival rate of passengers at an airport is recorded as 30 per hour on a given day. [Given $e^{-5}=0.007$]. Based on the above information answer the following questions:	
a)	The expected number of arrivals in the first 10 minutes of an hour	1
b)	The probability of exactly 4 arrivals in the first 10 minutes of an hour	1
c)	i)The probability of 4 or fewer arrivals in the first 10 minutes of an hour ii) The probability of 10 or more arrivals in an hour given that there are 8 arrivals in the first 10 minutes of that hour OR Given that the scores of a set of candidates on an IQ test are normally distributed. If the IQ test has a mean of 100 and a standard deviation of 10, what is the probability that a candidate who takes the test will score between 90 and 110? [Given $\mathrm{P}(\mathrm{Z}<1)=0.8413$ and $\mathrm{P}(\mathrm{Z}<-1)=0.1587$]	2
	CASE STUDY - II Location of three houses of society are represented by the points $\mathrm{A}(-1,0)$, $B(1,3)$ and $C(3,2)$ as shown in figure.	

	Based on the above information answer the following questions:	
a)	Equation of line AB and BC	1
b)	Area of region ABCD	1
c)	i) Area of triangle ADC ii) Area triangle $A B C$ OR The demand function for a commodity is $\mathrm{p}=\frac{10}{X+1}$. Find the consumers' surplus when the prevailing market price is 5 .	2
38	CASE STUDY - III Simran is rowing a boat. She takes 6 hours to row 48 km upstream whereas she takes 3 hours to go the same distance downstream. Based on the above information answer the following questions:	
a)	What is her speed of rowing in still water? Also find the speed of the stream.	1
b)	What is her average speed?	1
c)	The stream is flowing at the speed of $4 \mathrm{~km} / \mathrm{h}$. If Simran rows a certain distance upstream in 3.5 hours and returns to the same place in 1.5 hours, then find the speed of Simran's boat in still water. OR The speed of a boat in still water is $12 \mathrm{~km} / \mathrm{h}$. it takes twice as long as to go upstream to a point as to return downstream to the starting point. What is the speed of the stream?	2

